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A~~act-Buoyancy-driven flow and heat transfer in a horizontal annulus bounded by two im~~eable 
boundaries in the axial direction are numerically investigated in this work. A transient three-dimensional 
analysis of the end effects on heat transfer and the corresponding flow field is presented. The effects of the 
axial impermeable boundaries are shown to be characterized by retardation of the flow field through the 
viscous shearing force in regions near the end wails. The results show that the temperature distribution 
remains unchanged in the core region provided that the annulus length to outer radius ratio is larger than 
a critical value. Flow and temperature fields are found to be symmetrical with respect to the mid-axial 
plane of the annulus. A number of interesting features resulting from the sudden heating of the inner 
cylinder are presented. Finally, a thorough presentation of formation of flow and temperature fields as a 

result of the sudden heating of the inner cylinder is given. 

1. INTRODUCTION 

BuoYaNcY-driven flow and heat transfer in an annu- 
lus bounded by two horizontal cylinders have been 
the subject of a number of investigations in the past 
two decades. This is due to the relevance of such a 
geometry in a number of technologically important 
problems such as, nuclear reactors, thermal storage 
systems, cooling of electronic components, aircraft 
cabin insulation, underground electrical transmission 
lines, etc. A comprehensive literature survey con- 
cerning this configuration has been presented by 
Kuehn and Goldstein [l]. In most of these studies, the 
flow is assumed to be invariant in the axial direction 
which leads to a two-dimensional modeling of the 
problem. However, due to the viscous shearing effects 
at the end walls, the three-dimensional analysis is 
necessary and unavoidable for many practical appli- 
cations where the annuli has a finite axial length. A 
reflection through the available literature reveals that 
three-dimensional investigations are quite limited due 
to difficulties encountered in successful implemen- 
tation of the numerical schemes for such flow fields. 

Although there exists a number of studies con- 
cerning three-dimensional fluid flow and heat transfer 
in rectangular cavities [2], only a few three-dimen- 
sional investigations on buoyancy-driven convection 
in a concentric cylindrical annulus exist. In one such 
study Ozoe et al. [3] utilized the vorticity-vector poten- 
tial approach to solve the buoyancy-induced flow 
problem in vertical annular space heated from below. 
Numerical calculations were performed for Ra = 

6 x lo”, Pr = 10, and radius ratio of 2. The circulation 
pattern was found to consist of a symmetrical set of 

roll cells. Ozoe et al. [4] investigated the effects of 
inclination angle for the same problem. They reported 
that, as the heated surface was inclined from the lower 
horizontal position to an upper horizontal position, 
the mean Nusselt number at first decreased, then 
increased and finally decreased to unity as the mode 
of circulation switched from a symmetrical array of 
roll cells to distorted and oblique roll cells to a single 
circulation. Takata et al. [S] performed a study of 
natural convection in an inclined cylindrical annulus 
with heated inner and cooled outer cylinders only for 
a very high Prandtl number fluid. In another investi- 
gation, Fusegi and Farouk [6] considered a limited 
analysis of the three-dimensional natural convection 
in a horizontal annulus with the primary emphasis 
placed on the steady state results. 

In our investigation the transition three-dimen- 
sional governing equations are also fo~ulated in 
terms of vorticity and vector potential. However, a 
modified form of ADI has been utilized. The original 
method by Douglas [7], when applied to the heat 
conduction equation in a rectangle, is a perturbation 
of the Crank-Nicolson difference equation and is 
second-order accurate both in space and time. Dou- 
glas [8] pointed out that the obvious generalization of 
the above method to three space variables is not stable 
for a large ratio of the time increment to the square of 
the space increment. The second alternating direction 
method can be applied to three-dimensional problems, 
and was so presented in the work of Douglas and 
Rachford 193. A modified form of this method has 
been adopted in the present work. The results in the 
present work show that convection in the axial direc- 
tion is strongly influenced by boundary effects and the 
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NOMENCLATURE 

E: body force vector [m s ‘1 1) thermal expansion coefficient of fluid 

9 gravitational acceleration [m se ‘1 [Km ‘I 
L axial length of the annulus [m] 

W 
vorticity 

Nu Nusselt number, equation (26) ; dimensionless temperature, 

Pr Prandtl number, v/a (T- P*)l(T, - Tz) 
R* radial coordinate [m] p dynamic viscosity [kg m _ ’ s ‘1 
r dimensionless radial coordinate, R*/RT ” kinematic viscosity [m’ s- ‘1 

RCl Rayleigh number, g/lRT ‘AT/W density [kg m “1 

t* time [s] $ angular coordinate 

t dimensionless time, t*a/Rr’ Y vector potential. 

T temperature [K] 
AT temperature difference, T, -T, [K] Subscripts 

u dimensionless velocity vector, u*Rz/a 1 inner cylinder 

II* velocity vector [m s _ ‘1 2 outer cylinder 

Z axial coordinate [m] i nodal index in the r-direction 

z dimensionless axial coordinate, Z*/R:2. j nodal index in the &direction 
k nodal index in the z-direction 
Y radial component 

Greek symbols axial component 

LY thermal diffusivity [mz s ‘1 b, angular component. 

existence of a complex double-helix three-dimensional d[, 

flow pattern inside the annulus is illustrated. A x +(‘*‘& -(l “k 
thorough presentation of formation of flow and 
temperature fields as a result of the sudden heating of 
the inner cylinder is given in the present work and it 

pr 
> 

is shown that the temperature distribution remains ^ ,I 
unchanged in the core region provided that the annu- 
lus is long enough. 

2. ANALYSIS 

The geometric model and the coordinate system (R, 

4, Z), for the present work are shown in Fig. 1. 
The fluid is lodged between two concentric horizontal 
cylinders with an inner radius R,, outer radius R,, 

and an axial length of L. The heated inner cylinder 
surface and the cooled outer cylinder surface are kept 
at constant temperature T, and T,, respectively. The 
two axial ends of the annulus are assumed to be imper- 
meable and adiabatic. Due to the symmetric nature 
of the flow field with respect to a vertical plane cross- 

ing the center of the cylinders, the computations were 
performed for the 0 < 4 < 7~ region. The transformed 
dimensionless governing equations in terms of vor- 
ticity and a vector potential are established as 

-PrRusin4: (2) 

- Pr Ra cos q5 ;; (3) 

( a0 I a0 
+PrRa sin$g+;cos4@ 

! 
(4) 

(5) 

(6) 

v2v;+1; = 0 (7) 

i 3~'. av, 
4 = T- --~ r 04 3: 

(8) 

ay, _ m’. 
4/J = ;q; - --F; (9) 

y’, i;y’, i ay', u,=_;_+l-.~_ 
0 r r &#J 

00) 

where the non-dimensional variables in the above 
equation are defined by 

R* Z* r = --.. 
R:’ 

,- = _~ 
RF 

(11) 
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Insuk&ed boundaries 

FIG. 1. Schematic of the horizontal annulus with impermeable axial boundaries. 

lPRT * 
~=;----- ) *=f 

a RT2 

T- T, @=- 
T, -T2’ 

(12) 

In the above equations Y denotes the vector potential 
and 5 refers to the vorticity and the rest of the variables 
are defined in the Nomenclature. The above ten 
coupled partial differential equations for ten 
unknowns along with the specification of the proper 
boundary conditions describe the physics of the con- 
vective flow and heat transfer processes and complete 
the formulation of the problem. 

2.1. Boundary conditions 
On the inner and outer cylinder surfaces, the dimen- 

sionless temperatures are 8, and Q2, respectively. On 
the axial impermeable wall the normal derivative of 
temperature is zero. On all rigid and impermeable 
surfaces, the three components of the velocity are 
zero. The vorticity boundary conditions are deter- 
mined from the velocity gradients in the usual manner. 
Following the work of Hirasaki and Hetlums [IO] 
the normal gradient of the normal component of the 
vector potential is set to zero and the components of 
the vector potential tangential to the surface are also 
taken to be zero. Therefore, the boundary conditions 
at r = R:jR: or 1 can be written as 

j$!,)=Y,=Y,=O (16) 

O=H, or 8>. (17) 

Since no flow crosses the top and bottom angular 
symmetry planes, the angular velocity vanishes on 
that plane. The angular derivatives of the remaining 
velocity components and temperature also vanish on 
the angular symmetry plane. The boundary con- 
ditions at $ = 0 or n are then found to be 

(18) 

(19) 

At the end walls all the velocity components are zero. 
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The boundary conditions at z = 0 or L/R2 are then 
I‘ound to be 

(25) 

Since there are two kinds of temperature boundary 
conditions (specified temperature on the cylindrical 
surface portion and adiabatic on the axial plane por- 
tion) imposed on the corners in the angular direction, 
a multi-valued procedure similar to one used in ref. 

[ 1 I] has been utilized here. The same approach is also 
employed for treating the vorticity discontinuity at 
these locations. 

2.2. Heut transfer ~u~~u~ati~~.~ 
The local Nusselt number for this problem is 

defined as the ratio of the actual to the conduction 
heat transfer. That is 

where 

2nkL( T, - T,) 
hnd. = --- 

In W 
-*Y and R = $, (27) 

I 

The mean Nusselt number is defined as the angular 
average of the local Nusselt numbers at the mid axiaf 

FIG. 2. Isotherms for Rn = 4.3 x IO4 at different axial positions on the right and at mid axial plane on the 
left: (a) .: = L/2,0; (b) z = L/2, L/X: (c) z = L/2, L/4; (d) z = L/2, 3L/8. 
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FIG. 3. Flow patterns for Rn = 4.3 x IO4 at different axial positions: (a) .z = L/40; (b) z = L/2. 

- 
plane. The mean Nusselt numbers, G, , Nuz, in terms 
of dimensionless variables are defined as 

3. RESULTS AND DISCUSSION 

The four parabolic equations (l)-(4) are solved 
by the modified form of the tie-dimensional AD1 
method developed by Brian 1121. At each time step, 
the three elliptic equations (5)-(7) are solved by the 
three-dimensional extrapolated Jacobi scheme. The 
remaining equations (8)-( 10) are solved by the central 
difference approximation technique. 

Various combinations of mesh sizes were used to 
select one which produces grid independent results. 
Initially, the number of grids in the angular direction 
was set to 19 to examine the grid dependency of the 
results for the number of grids in the other directions. 
The number of grids in the radial direction was varied 
from 13 to 25, and 31 with 21 points in the axial 
direction. The calculation performed on a 25 x 19 x 21 
grid relative to a 13 x 19 x 21 grid system yielded a 
9% change in the mean Nusselt number and 6% in 
the maximum value of the stream function at the 
mid axial plane. The numerical results based on a 
31 x 19 x 21 grid did not show any appreciable 
changes, 0.4% in the mean Nusselt number and 0.1% 
in the maximum value of the stream function at the 
mid axial plane, relative to the 25 x 19 x 21 grid dis- 
tribution. 
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FIG. 4. The distribution of local Nusselt number for Ra = 4.3 x IO4 : (a) inner cylinder; (b) outer cylinder. 

To check the grid dependency in the axial direction, 

the number of grids was varied from 21 to 41, and 8 1 
with 25 points in the radial direction. The calculation 
performedona25x19x41relativetoa25x19x21 
grid system resulted in a 4% change in the mean 
Nusselt number and a 2% change in the maximum 
value of the stream function at the mid axial plane. 
The number of grids in the axial direction was further 
increased from 41 to 81 points. For the low Rayleigh 
number cases there were essentially no changes while, 
for the high Rayleigh number flows there was only 
0.5% variation in the mean Nusselt number and vir- 
tually no changes in the maximum value of the stream 

function at the mid axial plane relative to the results 

with 41 points in the axial direction. 
Next, the number of grids in the angular direction 

was varied from 19 to 37 with 25 and 81 points in the 
radial and axial directions, respectively. Again for the 
low Rayleigh number cases there were no changes 
while, for the higher Rayleigh number flows an 
extremely small refinement in the flow field was 
observed. Therefore, a 25 x 19 x 41 grid system was 
adopted for the low Rayleigh number flows. The use 
of a 25 x 37 x 81 grid system for the high Rayleigh 
number case resulted in obtaining heat transfer and 
flow field results that are in very good agreement 
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(a) 

Vectors-by26 
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W 

Contours incremnbtd by 4 

(4 

FIG. 5. Flow patterns for Ra = 4.3 x IO4 at different axial positions: (a) z = 3L/80; (b) z = 3L/40; 
(c) z = L/IO; (d) z = 17L/80. 

with the reported steady state results in the literature. 
Numerical tests were also performed with the above- 
mentioned grid distribution and different time steps 
sizes. It was determined that, a time increment of 
2 x 10d4 had to be used in order to obtain a time step- 
independent solution. The numerical computations 
were carried out on a Cray-YMP. The typical CPU 
time required for the converged solutions was about 
20 min. 

Numerical simulations of buoyancy-driven flow in 
a horizontal cylindrical annulus were performed suc- 
cessfully over a range of Rayleigh numbers. The 
results were obtained for cases with inner cylinder 
surface temperature of 6, = 1, and an outer cylinder 
surface temperature which was equal to that of the 
ambient temperature e2 = 0 and using air as the work- 
ing fluid. In all cases, the full transient characteristics 

of fluid flow and heat transfer inside the annulus were 
investigated. The fluid within the annulus was initially 
taken to be stationary and at a uniform ambient tem- 
perature. Since one of the objectives of this inves- 
tigation was to compare the numerical solution with 
the available experimental and numerical results, the 
outer cylinder to inner cylinder radius ratio of 2.6 (this 
radius ratio was used in the two-dimensional work of 
Kuehn and Goldstein [l]) was considered. To accu- 
rately detect the two-dimensional nature of the flow 
field in the core region, an annulus with length to 
outer radius ratio of at least 4 was used. It should be 
noted that in a related study Tsui and Tremblay 
[ 13) also investigated the transient two-dimensional 
natural convection in a horizontal annulus. 

The results of this investigation are presented at 
selected planes normal to the axial direction. The tem- 
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FIG. 6. Isotherms for Ra = 4.3 x lo4 at z = 3L/8 on the right and at mid axial plane on the left for different 
time steps : (a) t = 1OAf ; (b) t = 20At; (c) t = 3OAf; (d) t = 4OAt. 

perature distribution is presented in terms of iso- 
therms at these planes. The velocity vectors composed 
of radial and angular components of the velocity field, 
as well as the contours of the axial component, are 
presented side by side to facilitate the flow field visu- 

alization. The dotted lines in the contours of the axial 
component represent the negative contours while the 
positive contours are drawn as solid lines. In our 
convention, the negative and positive axial velocity 
contours would illustrate areas within which the fluid 
is moving into (negative z-axis) or out of the plane, 
respectively. The local heat transfer from inner and 
outer cylinders is presented by three-dimensional sur- 
face plots of the corresponding Nusselt numbers. The 
flow pattern at the mid axial plane where the axial 

component of velocity vanishes, is directly presented 
in terms of streamlines. This is because the flow 

becomes two-dimensional at the core region, provided 
that the annulus is long enough. 

The results for the case of Ra = 5 x lo2 at the mid 

axial plane (for brevity not presented herej indicated 
the stable crescent-shaped flow pattern. The isotherms 
were made up of concentric circles inside the annulus. 
This is because the velocities were too small to affect 
the temperature distribution and consequently the 
heat transfer mechanism is mainly by conduction. 
As the Rayleigh number is increased from 5 x lo2 
to 4.3 x lo’, the velocity field starts to influence the 
temperature distribution in the annulus. However, 
conduction is still a major mode of heat transfer inside 
the annulus. As the Rayleigh number is increased the 
center of rotation for the crescent-shaped flow moves 
upward in the angular direction. In order to verify the 
symmetrical nature of the flow field with respect to 
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FIG. 7. Isotherms for Ra = 4.3 x IO4 at z = 3L/8 on the right and at mid axial plane on the left for different 
time steps: (a) t = 50At; (b) t = lOOAt; (c) t = 150At; (d) r = 200Ar. 

the mid axial plane and the extent of the two-dimen- 
sionality of the flow field in the core region, tem- 
perature distributions for Ra = 4.3 x lo3 at several 
different paired positions along the axial direction 
were investigated. These locations were symmetrical 
with respect to the mid axial plane and were situated 
at axial positions including, and away from, the end 
walls of the annulus. Our investigation clearly estab- 
lished the symmetry of the isotherms with respect to 
the mid axial plane of the annulus. Furthermore, the 
temperature distribution within the core region of 
the annuli was found to be independent of the axial 
position. Consequently, the problem could be treated 
as two-dimensional convection in the R-4 plane 
within the core region. However, the isotherms at the 
end walls were significantly different from the iso- 
therms at the mid axial plane. This is due to the 

boundary effects at the end walls which enhance the 
role of axial convection. 

To examine the extent of this core region, i.e. the 
region within which the flow is essentially two-dimen- 
sional ; temperature distributions at several paired 
positions along the axial direction were also inves- 
tigated for Ra = 4.3 x 104. These locations were 
chosen at axial positions including and away from the 
left end wall, l/8 of the annulus length apart. Figures 
2(a)-(d) illustrate the temperature distribution at 
these locations, respectively. In these figures, the iso- 
therms at the mid axial plane are presented on the 
left-hand side while the corresponding isotherms at 
the cited locations are displayed on the right-hand 
side. The shape of the isotherms clearly shows that 
heat is being extracted from the lower part of the inner 
cylinder and convected to the upper part of the outer 
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Vectors n- by 26 

FIG. 8. Flow patterns for Ra = 4.3 x lo* and different time steps at z = 3L/8: (a) t = lOAt; (b) f = 2082; 
(c) t = 30At; (d) t = 4OAt. 

cylinder. As the fluid adjacent to the inner cylinder 
moves up, the thickness of the thermal boundary layer 
around the inner cylinder increases and it eventually 
separates from the upper part of the inner cylinder 
and is entrained within the hot buoyant plume on top 
of the inner cylinder. The energy transferred from the 
lower portion of the inner cylinder is carried by this 
buoyant plume to the top of the outer cylinder. This 
hot plume is subsequently entrained by the thermal 
boundary layer along the outer cylinder as it is carried 
downward in the negative angular direction. The fluid 
within the thermal boundary layer along the outer 
cylinder loses energy as it moves down and conse- 
quently the thermal boundary layer separates from 
the outer cylinder at about 4 z n/3. The separation 
of the inner and outer cylinder thermal boundary 
layers results in the radial temperature inversion 

which is seen in Fig. 2. This phenomenon, of course, 
is due to the strong recirculating nature of the flow 
field. Based on these figures it can be deduced that 
the core region essentially spans a region which is 
approximately given by L/4 < z < 3L/4. Comparing 
Fig. 2 with the corresponding figure for Ra = 
4.3 x lo3 (not presented here for brevity), it is found 
that, as expected, the extent of the core region within 
which the temperature distribution is independent of 
the axial position decreases with an increase in the 
Rayleigh number. 

The flow field for Ra = 4.3 x lo4 at a plane adjacent 
to the left end wall and the mid axial plane are pre- 
sented in Figs. 3(a) and (b), respectively. The 
maximum values of the velocity vectors in the R-4 
plane at the above locations are 59.9 and 78.5, 
respectively. The velocity vectors are normalized by a 
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(a) 

G.3 
FIG. 9. Flow patterns for Ra = 4.3 x IO4 and different time steps at z = 3L/8: (a) t = 50At; (b) t = lOOAt; 

(c) t = 150At; (d) t = 2OOAt. 

factor of 26 to avoid clustering them together. Again, 
in here as in all other related figures, velocity vectors 
with a magnitude of less than 0.01 are not plotted, 
The maximum values of axial velocities in Figs. 3(a) 
and (b) are 14 and 0.01 while, their minimum values 
are - 24 and - 0.01, respectively. The contour values 
for the axial velocity are incremented by 4 in this 
case. As shown in these figures, the R-4 ffow field is 
considerably retarded near the wall whereas the axial 
velocities nearly vanish around the mid axial plane. 

The distributions of local Nusselt number for 
Rcz = 4.3 x IO4 are presented in Figs. 4(a) and (b), 
respectively. As can be seen, aside from the regions 
close to the axial boundaries, the inner cylinder Nus- 
selt number is almost independent of the axial coor- 
dinate, z. Close to the axial boundaries, the core value 
of the inner cylinder Nusselt number is reduced by 

about 5.5% at the lower angular symmetry plane, 
4 = 0, while, it is reduced by about 22% at the upper 
angular symmetry plane, Q, = 1~. The core region for 
the outer cylinder Nusselt number is significantly 
reduced covering only l/3 of the axial length. 
However, it should be noted that, the outer cylinder 
Nusselt number at the lower angular symmetry plane, 
4 = 0, is almost independent of the axial direction. 
Its core value reduces only by 0.7% at the end walls. 
Figure 4(b) also shows that the outer Nusselt number 
goes through several maxima around the upper 
angular symmetry plane, Cp = n. This phenomenon is 
due to the presence of a strong three-dimensional flow 
field outside the core region. 

To substantiate the above-mentioned phenomenon 
the velocity fields at four axial locations are presented 
in Figs. 5(a)-(d). These axial locations are at z = 362, 



2566 K. VAFAI and J. ETTEFAGH 

6Az, 8Az, and 1782. The maximum values of axial reveals that the magnitude of the radial and axial 
velocities are 18, 11,7.6, and 4.5, while their minimum velocities in the upper part of the buoyant plume has 
values are - 24, - 11, - 11, and -4.9, respectively. this time experienced an increase. Therefore, over this 
The axial velocity contours are incremented by 4 and portion of the z-axis the heat transfer from the upper 
displayed on the left-hand side of these figures. Com- part of the outer cylinder increases. Finally, com- 
parison of the flow fields in the upper parts of Figs. parison of Figs. 5(c) and (d) indicates that the radial 
5(a) and (b) shows that the magnitude of the radial velocity in the plume remains almost unchanged 
velocity which is responsible for the formation of the whilst the axial velocity is reduced along the axial 
hot buoyant plume has decreased in the axial direc- direction. Therefore, over this portion of the z-axis 
tion. Similarly, the contours of the axial velocity also the heat transfer from the upper part of the outer 
indicate a substantial decrease in the axial direction. cylinder is slightly decreased. It is this complex vari- 
Consequently, the heat transfer from the upper part ation in the three-dimensional flow field which is 
of the outer cylinder reduces considerably. On the directly responsible for the variations of the Nusselt 
other hand, a close examination of Figs. S(b) and (c) number shown in Fig. 4(b). 

FIG. 10. 

inner cylinder _ 

-_- outer cylinder a 

0.10 0.15 0.20 0.25 

(a) 

inner cylinder 
$ 

0.05 0.10 0.1s 0.20 

Time (non-dimensional) 

Temporal variations of the mean Nusselt number at mid axial plane for different 
numbers : (a) Ra = 4.3 x 10’ ; (b) Ra = 4.3 x 104. 
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Ku&n and G&Win (1976) 

W 60 
Pment work 

FIG. 11. Comparison of the streamlines and isotherms for different Rayleigh numbers : (a) and (c) 
Ru = 4.3 x 103; (h) and (d) Ra = 4.3 x 104. 

3.1, Transient results 
Figures 6-9 show the transient response of the flow 

and tem~rature fields for Ra = 4.3 x lo4 at an axial 
position which is 3/S of the annulus length away from 
the left end wall. The temperature distributions on 
this plane at different times are displayed on the right- 
hand side of Figs. 6 and 7 while the corresponding 
isotherms at the mid axial plane are shown on the 
left portion of these figures. Here, the isotherms are 
incremented by 0.1 from their minimum value of 0.0 
at the outer cylinder surface to their maximum value 
of 1 .O at the inner cylinder surface. The flow patterns 
at this plane for the same time steps are presented in 
Figs. 8 and 9. The maximum values of axial velocity 
are 16x 10e4, 3.1 x 10s4, 5.5 x 10m4, 9.7 x 10W4, 
2.1x10~3,4~lx10~2,2x10~i,and6.4x10~’while 

their minimum values are - 1.6 x 10m4, -2.9 x 10P4, 
--5.5~10-~, -l~lO-~, -1.4~10-~, -3.6x10-‘, 
-2.1 x lo-‘, and -6.9x lo-‘, respectively. Since 
this axial position is located inside the core region 
within which the flow is essentially two-dimensional, 
its associated axial velocities are almost negligible 
when compared to the magnitude of the velocity vec- 
tors in the R-4 plane. It should be noted that, the 
solid line on the left portion of the above figures 
divides the regions within which the direction of axial 
velocity is either into or out of the R-C#J plane. 

In the early stages of flow development (0 < t 6 
20At), conduction is the dominant heat transfer mech- 
anism inside the annulus as indicated by the shapes 
of the isotherms in Figs. 6(a) and (b). As seen in Figs. 
8(a) and (b) during this period, the recircuiating flow 
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(a> @I (cl (4 
Takata et al. (I 984) Present work 

FIG. 12. Comparison of isotherms for Ra = IO’, Pr = 5 x 10’ at different axial planes: (a) and (c) end 
wall ; (b) and (d) mid axial plane. 

has not picked up enough momentum to initiate a 
substantial transfer of energy from the inner cylinder 
to other regions of the annulus. For later times 
(30At < t < 40A,t), the recirculating flow in the R-4 
plane becomes strong enough to increase the tem- 
perature of the fluid inside the annulus (Figs. 6(c), 
(d), 8(c) and (d)). The strength of the recirculating 
flow reaches its peak around t = 50At, whereas, seen 
by the flow structure in Fig. 9(a), the maximum value 
of the velocity vectors in the R-q5 plane is achieved. 
After this time, due to an increase in the overall tem- 
perature of fluid in the upper part of the annulus, the 
strength of the recirculating flow begins to gradually 
decrease in time as seen by a close examination of the 
flow patterns in Figs. 9(b)-(d). This gradual decline 
continues up to a point in time after which, no further 
changes in the strength of the recirculating flow is 
observed. It is this recirculating flow which produces 
the temperature inversion which is observed in Figs. 
7(b)-(d). It should be noted that, for this case, the 
steady state solution was reached at about t = 500At. 

4. ACCURACY OF THE NUMERICAL SCHEME 

AND COMPARISON WITH PREVIOUS RESULTS 

Aside from the detailed investigations, which were 
described earlier, on grid and time step independence 
several other tests and comparisons were performed. 
First, a case in which both cylinders were kept at 
constant and equal temperature was investigated. 
Obviously, the analytical steady state solution for this 
case is an isothermal fluid having the same tem- 
perature as that of the cylinders throughout the annu- 
lus. The numerical scheme provided an almost iden- 
tical result. 

To further check the accuracy as well as the con- 
vergence of the numerical scheme, the mean Nusselt 
numbers at the inner and outer cylinders were com- 
pared. The mean Nusselt number is defined as the 

angular average of its local values at the mid axial 
plane (equations (28) and (29)). The temporal vari- 
ations of the mean Nusselt numbers for Ra = 

4.3 x lo3 and 4.3 x lo4 are presented in Figs. 10(a) 
and (b), respectively. The solid line represents the 
inner cylinder mean Nusselt number while the dotted 
line is used for the outer cylinder. As seen in Fig. 10 
the inner cylinder mean Nusselt number experiences 
a decrease in time and the outer cylinder mean Nusselt 
number experiences an increase followed by their 
approach to a common steady state value. It should 
be noted that, in theory for a purely two-dimensional 
flow field, based on a simple energy balance, their 
asymptotic values should converge to the same value. 
As shown in Fig. 10(a) for Ra = 4.3 x 103, the devi- 
ation is so small that it cannot be visually detected. 
For Ra = 4.3 x 104, the relative difference between the 
inner and outer mean Nusselt numbers at steady state 
was found to be less than 1%. 

The first set of comparisons was done with the 
results reported by Kuehn and Goldstein [l]. Figures 
11 (a) and (b) which are reproduced from their work, 
represent the streamlines and isotherms for Ra = 
4.3 x lo3 and 4.3 x 104, respectively. Our cor- 
responding three-dimensional solutions at the mid 
axial plane and at steady state are presented in Figs. 
1 l(c) and (d). Comparison of the above figures shows 
an excellent agreement between the flow field and the 
temperature distribution. It should be noted that even 
locations of centers of rotation are in agreement. The 
inner and outer cylinder mean Nusselt numbers in the 
cited reference were also compared with the mid axial 
plane Nusselt numbers in the present study. Again, 
the comparison showed an excellent agreement with 
less than 0.5% deviation in the results. 

The second set of bench marking was done with 
the results reported by Takata et al. [5]. They had 
investigated the steady state three-dimensional natu- 
ral convection in a horizontal annulus for only one 
very large Prandtl number. Specifically, their three- 



Transient three-dimensional buoyancy-driven flow and heat transfer in a closed horizontal annulus 2569 

dimensional solution was based on a Prandtl number 

of 5000 in an annulus with radius ratio of RJR, = 2, 
length to radius ratio of L/R, = 2, and Rayleigh num- 
ber of Ra = 10’. Figures 12(a) and (b) show the iso- 

therms at the end wall and the mid axial plane, repro- 
duced from their work. The isotherms at the cor- 
responding locations generated in the present work 
are shown in Figs. 12(c) and (d). As it can be seen, 
the computed results through our transient simulation 
are in excellent agreement with the steady state results 
reported by Takata et al. [S]. 

5. CONCLUSIONS 

Transient three-dimensional buoyancy induced 
flow and heat transfer in a closed horizontal annulus 
was numerically investigated. A detailed analysis of 
the three-dimensional flow and temperature fields was 
presented and the effects of the impermeable end walls 
on the flow field were discussed. The existence and 
validity of a two-dimensional solution was explored 
and the presence of a core region was established. 
Various aspects of the three-dimensional dependency 
of the Nusselt number were presented and discussed. 
Finally, the formation of the complex flow and tem- 
perature fields as a result of the sudden heating of the 
inner cylinder was analyzed. 
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ETUDE DE L’ECOULEMENT NATUREL TRIDIMENSIONNEL, VARIABLE ET DU 
TRANSFERT THERMIQUE DANS UN ESPACE ANNULAIRE FERME ET 

HORIZONTAL 

RbmnGOn Ctudie numeriquement l’koulement de convection naturelle et le transfert thermique dans 
un espace annulaire horizontal limite par deux front&es impermeables dans la direction axiale. On 
presente une analyse tridimensionnelle variable des effets de bout sur le transfert thermique et l’ecoulement 
correspondant. Les effets des frontieres impermeables sont caracterists par un retardement du champ 
d’ecoulement a cause du frottement visqueux dans les regions proches des bouts. Les resultats pour l’air 
et un rapport des rayons &gal a 2,6 montrent que la distribution de temperature reste inchangee dans le 
coeur pourvu que le rapport de la longueur de l’anneau au rayon externe soit superieur a 4. Les champs 
de vitesse et de temperature sont symitriques par rapport au plan vertical median de l’anneau. On presente 
quelques configurations interessantes resultant du brusque chauffage du cylindre interieur. On considtre 
enfin la formation des champs de vitesse et de temperature a la suite du brusque chauffage du cylindre 

intkieur. 
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IJNTERSUCHUNG DER INSTATIONAREN DREIDIMENSIONALEN 
AUFTRIEBSSTROMUNG UND DES WARMEUBERGANGS IN EINEM GESCHLOSSENEN 

HORIZONTALEN RINGRAUM 

Zusammenfassuog-In dieser Arbeit werden die Striimung und der Warmeiibergang bei natiirlicher Kon- 
vektion in einem waagerechten Ringraum untersucht, der in axialer Richtung durch zwei undurchlissige 
Begrenzungen abgeschlossen ist. Der EinfluD der Endeffekte auf den Warmeiibergang und das ent- 
sprechende Stromungsfeld wird analytisch untersucht (instationlr, dreidimensional). Der EinfluB der un- 
durchlassigen End&hen ist durch eine Verziigerung des Striimungsfeldes gekennzeichnet, die durch die 
viskosen Scherkrlfte in den Endregionen hervorgerufen wird. Die Ergebnisse fiir Luft und ein Radi- 
enverhlltnis von 2,6 zeigen, daD die Temperaturverteilung im Kembereich unverlndert bleibt, voraus- 
gesetzt, dal3 das Verhlltnis von Lange zu luBerem Radius des Ringraums griil3er als 4 ist. Die Stromungs- 
und Temperaturfelder sind beztiglich der axialen Mittelebene des Ringraums symmetrisch. Bei einer 
pliitzlichen Beheizung des inneren Zylinders ergibt sich eine Reihe interessanter Gesichtspunkte. 
AbschlieBend erfolgt eine ausfiihrliche Darstellung der Entwicklung von Stromungs- und Temperatur- 

feldern in der Folge der pliitzlichen Beheizung des inneren Zylinders. 

HCCJIEAOBAHHA HECTAHHOHAPHOI-0 TPEXMEPHOFO TE’IEHHR, BbI3BAHHOI.O 
I-IOA’bEMHOfi CHJIOR, H TEI-IJIOI-IEPEHOCA B 3AMKHYTOM FOPH30HTAJIbHOM 

KOJIbqEBOM KAHAJIE 

,bWM,“e-YHCXCHHO HCCneAyH3TCK BbI3BZlHHOe IIOAWv4HOii CKn0i-i Te’IeHHe B TeWOnepeHOC B rOpH- 

30HTUbHOM KOnbUeBOhl KaHaJIe C AByMK HenpOHHAaeMUMH rpaHHAaMH B OCeBOM HanpaBneHHH. 

&EACTaBJleHbl HeCTaIUtOHapHbIfi~XMepHbIiiaHaJlH3BnHfIHHIl TOpUOB HaTeDJIOIIe~HOC~COOTBeTCT- 

~yl0uw none TeYeHm. lIoKasaH0, STO *KT~I aKcrianbribrx uenpoimuae~x rpamiu ebrpa~arorcr B 

sabfennekms nom -re¶emin 38 CYW CABH~OBOG cwb~ 8513~oro conpoTsienemix ua yracrrce y ropueehrx 
CTeHOK. Pe3yJIbTaTbJ nonyYeHHbIe AJIR BosAyxa B cnyvae OTHOuIeHHn paAHycoB, paBHOr0 2,6, nOKa3bI- 
BaIOT,STO paCIXpe.AeneHUeTeMIlepaTyp B o6nacre nApa OCTaeTCK IlOCTORHHbIM lIpH yCnOBHH,'ITO OTHO- 
weHHe A.~HHM Kamna K BHeumeMy paAHycy 6onbme 4. HakeHo, STO nom TeqeHm x TeMnepaTyp 

IIBnIIlOTCII CHMMeTpHSHbNH OTHOCHTenbHO O0ZBOii "JIOCKOCTH KaHaJIa. npHBOAKTCR HeKOTOpble HHTe- 

peCHbIe OCO&HHOCTH,CBK3aHHbIe C BFe3anHbIM HarpBOM BHyTpeHHerO UHnHHApa. fleTanbH0 aHaJIH3H- 

pyewnTaKncet$ophfwposaHue noneii Tevetmn~ rebfneparyp ~pe3ynbTaTe3Toro Harpesa. 


